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Abstract. We present exact calculations of the zero-temperature partition function (chromatic
polynomial) and the (exponent of the) ground-state entggr theg-state Potts antiferromagnet

on families of cyclic and twisted cyclic (Bbius) strip graphs composed pfsided polygons. Our
results suggest a general rule concerning the maximal region in the cognplare to which one

can analytically continue from the physical interval whége> 0. The chromatic zeros and their
accumulation seB exhibit the rather unusual property of including support for(®®e< 0 and
provide further evidence for a relevant conjecture.

The g-state Potts antiferromagnet (AF) [1, 2] exhibits nonzero ground-state enfippy,0
(without frustration) for sufficiently large on a given graph or lattice. This is equivalent to

a ground-state degeneracy per dite> 1, sinceSp = kg In W. Such nonzero ground-state
entropy is important as an exception to the third law of thermodynamics [3]. There is a close
connection with graph theory here, since the zero-temperature partition function of the above-
mentionedy-state Potts AF on a grapfi satisfiesZ(G, ¢, T = Q) par = P(G, q), Where

P (G, ¢) is the chromatic polynomial expressing the number of ways of colouring the vertices
of the graphG with ¢ colours such that no two adjacent vertices have the same colour [4-6].
Thus

W((G), q) = lim PG, )" (1)

wheren = v(G) is the number of vertices o and{G} = lim,_ ., GY. SinceP(G, q)

is a polynomial, one can generalizefrom Z. to R and toC, and this is useful, just as the
study of functions of a complex variable gives deeper insight into functions of a real variable in
mathematics. The zeros 8{G, ¢) inthe complex plane, called chromatic zeros, are of basic
importance. Their accumulation set in the limit> oo, denoted3, is the continuous locus of
points whereW ({G}, ¢) is nonanalytic. A fundamental question concerning the Potts AF is
the maximal region in the complexplane to which one can analytically continue the function

W ({G}, q) from physical values where there is nonzero ground-state entropyi.e.1. We
denote this region aR;. In this letter we present exact calculationsgi5, ¢) andW ({G}, ¢)

for families of strip graphs with free transverse and periodic longitudinal boundary conditions.
From these we infer an answer to the above question.
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These results are of further interest because of a property of the chromatic zeros. For
many years, no examples of chromatic zeros were found with negative real parts, leading to
the conjecture that Rg) > 0 for any chromatic zero [11]. Although this was later shown to
be false [12], very few cases of graphs with chromatic zeros having)Re 0 are known,
and the investigation of such cases is thus valuable for the insight it yields into properties of
chromatic zeros. Note thatthe condition that a graph has some chromatic zeros wijh<k@
is a necessary but not sufficient condition that it has an accumulatidhwsigh support for
Re(g) < 0. For the graph families considered here we find that both the chromatic zeros and
their accumulation sé include support for R&;) < O.

We start with a cyclic strip of the square lattice comprised sefjuares, with its longitudinal
(transverse) direction taken to be horizontal (vertical). By cyclic, we mean that this strip has
periodic boundary conditions in the longitudinal direction, which will extend to infinity in the
m — oo limit. Now addk — 2 vertices to the upper edge akhd- 2 vertices to the lower
edge of each square. We denote this grap{Césy . .,... The analogous graph with twisted
periodic longitudinal boundary conditions is adkius strip, denotedCh) m cyc... These
graphs have = 2(k — 1)m vertices and can be regarded as cyclic and twisted cyclic strips of
m p-sided polygons, wherg = 2k, such that eacp-gon intersects the previous one on one of
its edges, and intersects the next one on its opposite edge. For agitte(Ch) . cyc. and
(Ch)i,m,cye.,: fTorm separate homeomorphic familiest. The girth (length of minimum closed
path) isg = p = 2k for both.

Define

= k—1
D=y (f e @

By iterated use of the deletion—contraction theorem [5], we obtain the chromatic polynomials

P((Ch)im,eye., q) = cot (a))™ + (g — D[(a)™ + (az)"] ©))

P((CR)tm,cyens @) = ¢y’ + (@)™ + (=D (g — D[(a)™ — (a3)"] (4)
with co = g2 — 3¢ + l,cg) =-1,

a1 = Dy 5)

az = (=) Dys1 + Dy (6)

az = (-1 D1 — Dy. (7

In the lowest casé; = 2 (cyclic and twisted cyclic ladder graphs), equations (3), (4) reduce
to known results [8, 12]. In [17] we have calculatBcand W for these cases, as part of the
general studies in [14-22P always has a factey(g — 1); in addition,P ((Ch)i m.cyc., ¢) has a

(q — 2) factor for(k, m) = (e, 0) andP ((Ch)g.m.cye..» q) has a factoD? for oddk, (¢ — 2) D?

for (k,m) = (e, e) and D,f for (e, 0), wheree = even andv = odd. (For oddk, D; has a
factor (¢ — 2).) These are in accord with the values of the chromatic numb@ninimum

g to colour the graph with the above constraint): fétm) = (e, e), (0, ¢), and (o, o),
X((Ch)k,m,cyc.) =2 andX((Ch)k,m,cyc.,t) = 3 while for (k, m) = (e, 0), X((Ch)k,m,cyc.) =3
andX((Ch)k,m.cyc.,r) =2.

Takingm and hence to infinity, we determinéV. For special pointg, (e.g.,¢q; = 0, 1)
where the limitsn — oo andg — ¢, do not commute, we use the order of limits in
equation (1.5) of [17], i.en — o0, theng — ¢,;. For a giveng € C, W(q) is determined
by the terma; which is ‘leading’, i.e., has maximak;| > 1 over thej, and if|a;| < 1,

T Two graphsG and H are homeomorphic to each other if one of them, Bgycan be obtained from the othe?,
by successive insertions of degree-two vertices on bonds(efg., [13-15]).
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Figure 1. B for lim,, . oo (Ch)k,m,cye.y With k = (@) 3, (b) 4. Chromatic zeros are shown for the
cyclic case withm = 10, i.e.,n = (a) 40, (b) 60.

thenW is determined by, and|W| = 1. The locuss is determined by the degeneracy of
leadinga;. From equations (3), (4), it follows th& andB are the same fo{C /)i, m=co,cye.
and(Ch)i.m=co.cyc.; (iNdicated in the figure captions ky)).

This locus is shown in figures 1 and 2 for3k < 6 together with chromatic zeros for
long finite strips for comparison. We note the following theoreifi¢i) separates the plane
into various regions; (ii) is compact in this plane; and (iii) for> 3, contains support for
Re(g) < 0. Theorem (i) is proved by explicit solution of the equations for the bounary
Theorem (ii) is proved by recasting the degeneracy equations in the vagiabld /g and
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Figure 2. B for lim,_, oo (Ch)k,m,cyc.y With k = (@) 5, (b) 6. Chromatic zeros are shown for the
cyclic case with§) m = 8 (n = 64), o) m = 5 (n = 50).

showing that they have no solution foe= 0. Theorem (jii) is proved below.
We find the following regions and forms fé' : first, R1, which includes the real intervals
g > 2 andg < 0 and surrounds all df. Here

W = (DZk)ﬁ for q € R1. (8)
Forrealg > 2 and a giverk, W increases monotonically from 1@t= 2, approaching from
below asg — co: W(g — o0) = g[1 — (2k — 1)(2k — 2)"1g~1 + O(¢—?)]. For a fixedyg in
this interval,W is a monotonically increasing function bf This can be understood physically
in the case of integra} > 2 since an increase inincreases the girth and thereby weakens



Letter to the Editor L199

the colouring constraint. Ag — 0~ in Ry, W — (2k — 1)ﬁ. For regionsk; # Ry, only
the magnitudéW| can be determined [17]. The innermost region, dend@gdncludes the
interval 0< g < 2. Here, respectively,

(W] = |a2’3|2<k71—1> for geR; and k even, odd 9)

The condition of degeneracy of leading terms in the vicinity &£ 0 iS|a1| = |az| for evenk
and|a;| = |as| for oddk. Expanding these for fixelandr — 0, whereg = ré?, we get
(k? — 3k + Dr )

cosh = 20k~ 1) +O(r°). (10)
Hence, in the vicinity ofy = 0, the curves is concave toward the right (bends to the upper and
lower right) fork = 2 but is concave to the left far > 3. This proves theorem (jii), which, in
turn, implies that for a givek > 3, and for sufficiently larga, these families have chromatic
zeros with R€g) < 0 (as is evident from figures 1 and 2), which become dense -asoo,
to form the part of the respectivewith Re(g) < 0. Fork = 3,4 and 5, chromatic zeros of
(Ch)i m,cye. aNA(Ch) g n cye.: With Re(g) < 0 occur first for strip lengths: = 6, 4, and 3,
respectively; whet reaches the value = 6, they occur already for the minimum nontrivial
strip lengthyn = 2.

The fact that these families combine properties (ii) and (iii) is of particular interest since
we have previously found a number of families of graphs withiqRe< 0 for some chromatic
zeros and part oB, but in these case# was noncompact (unbounded in thelane) [22].

The property (i) also contrasts with the situation for homogeneous open strips, where we
found [15, 21] thai3 does not enclose regions in thelane.

We next comment on the other regions. Atthe pgiat 2 (= ¢., whereg, is the maximal
value of realy € 5 [16,17]) one branch oB crosses the real axis vertically. To the upper and
lower right ofq., there are two complex-conjugate (c.c.) regions, densfedandr; , (r =
‘right’); here, |W| = |as|Y2*=DI for evenk and|W| = |ay|Y*-DI for oddk. In the latter
case of odd, there are two additional c.c. regions adjacenj.tto the upper and lower left,
denotedR,, ., Ry, (¢ = ‘'left’); in these regions|W| = 1. Thus, for even and odi four
and six curves o#f intersect ay,., respectively. As is evident from figures 1 and 2, #og 4
there are further c.c. pairs of regions, each consisting of a pair on either side of the ‘main’ part
of B; here, in the outer part$W| = |as|Y*-I for evenk and|W| = |ay|Y2*=D] for odd
k, while in the inner partg,W| = 1 for both even and odkl. From our findings here we infer
that the total number of regions i%&.2

Define the outer envelop of B to be the set of € B with maximal value oflg — 1];
this is the inner boundary of regiaty. We observe that this envelopelways lies outside of
the unit circlelg — 1| = 1. Ask increasesB lies closer to this circle.

Our present results strengthen the evidence for our conjectures [21, 22] that on a graph
with well-defined lattice directions, a hecessary property for there to be chromatic zeros and,
inthen — oo limit, a locusB including support for Ré&g) < 0, is that the graph has at least
one global circuit, defined as a route along a lattice which is topologically equivalent to the
circle, S. (This is known not to be a sufficient property, as shown, e.g., by the circuit and
ladder graphs, which have such global circuits, but whose chromatic zeros amtiiage
support only for Rég) > 0.) Note that in the second conjecture, the length of this global
circuit, L, ., must— oo asn — oo in order for some chromatic zeros and part of the locus
B to include support for Rg;) < 0. For the family(Ch) m,cyc. there are two such global
circuits, along the upper and lower sides of the stript.

T We have also calculate®l, W, andB for the cyclic strips of the square lattice with widih = 3 and the Kagor®@

lattice with L,, = 2, and again these yield chromatic zeros &nalith support for R€g) < 0 and haveB separating
theq plane into different regions.
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This letter, combined with our earlier calculations [17-22], suggests an answer to the
basic question of how large is the regi®&a to which one can analytically continu& from
the interval ing whereS, > 0O for graphs with regular lattice directions: a sufficient condition
that in then — oo limit the locusB separates the plane into two or more regions is that
the graph has a global circuit with lim . £, . = oot. Thus, for graphs (with regular lattice
directions), a necessary condition tiRatincludes the full; plane (except for the set of measure
zero occupied by) is that the graphs do not contain any such global circuits.

This research was supported in part by the NSF grant PHY-97-22101.
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