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Abstract. We present exact calculations of the zero-temperature partition function (chromatic
polynomial) and the (exponent of the) ground-state entropyS0 for theq-state Potts antiferromagnet
on families of cyclic and twisted cyclic (M̈obius) strip graphs composed ofp-sided polygons. Our
results suggest a general rule concerning the maximal region in the complexq plane to which one
can analytically continue from the physical interval whereS0 > 0. The chromatic zeros and their
accumulation setB exhibit the rather unusual property of including support for Re(q) < 0 and
provide further evidence for a relevant conjecture.

Theq-state Potts antiferromagnet (AF) [1, 2] exhibits nonzero ground-state entropy,S0 > 0
(without frustration) for sufficiently largeq on a given graph or lattice. This is equivalent to
a ground-state degeneracy per siteW > 1, sinceS0 = kB lnW . Such nonzero ground-state
entropy is important as an exception to the third law of thermodynamics [3]. There is a close
connection with graph theory here, since the zero-temperature partition function of the above-
mentionedq-state Potts AF on a graphG satisfiesZ(G, q, T = 0)PAF = P(G, q), where
P(G, q) is the chromatic polynomial expressing the number of ways of colouring the vertices
of the graphG with q colours such that no two adjacent vertices have the same colour [4–6].
Thus

W({G}, q) = lim
n→∞P(G, q)

1/n (1)

wheren = v(G) is the number of vertices ofG and {G} = limn→∞G¶. SinceP(G, q)
is a polynomial, one can generalizeq from Z+ to R and toC, and this is useful, just as the
study of functions of a complex variable gives deeper insight into functions of a real variable in
mathematics. The zeros ofP(G, q) in the complexq plane, called chromatic zeros, are of basic
importance. Their accumulation set in the limitn→∞, denotedB, is the continuous locus of
points whereW({G}, q) is nonanalytic. A fundamental question concerning the Potts AF is
the maximal region in the complexq plane to which one can analytically continue the function
W({G}, q) from physical values where there is nonzero ground-state entropy, i.e.,W > 1. We
denote this region asR1. In this letter we present exact calculations ofP(G, q) andW({G}, q)
for families of strip graphs with free transverse and periodic longitudinal boundary conditions.
From these we infer an answer to the above question.

§ E-mail address:robert.shrock@sunysb.edu
‖ E-mail address:tsai@hal.physast.uga.edu
¶ Some previous works include [4–10].
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These results are of further interest because of a property of the chromatic zeros. For
many years, no examples of chromatic zeros were found with negative real parts, leading to
the conjecture that Re(q) > 0 for any chromatic zero [11]. Although this was later shown to
be false [12], very few cases of graphs with chromatic zeros having Re(q) < 0 are known,
and the investigation of such cases is thus valuable for the insight it yields into properties of
chromatic zeros. Note that the condition that a graph has some chromatic zeros with Re(q) < 0
is a necessary but not sufficient condition that it has an accumulation setB with support for
Re(q) < 0. For the graph families considered here we find that both the chromatic zeros and
their accumulation setB include support for Re(q) < 0.

We start with a cyclic strip of the square lattice comprised ofmsquares, with its longitudinal
(transverse) direction taken to be horizontal (vertical). By cyclic, we mean that this strip has
periodic boundary conditions in the longitudinal direction, which will extend to infinity in the
m → ∞ limit. Now addk − 2 vertices to the upper edge andk − 2 vertices to the lower
edge of each square. We denote this graph as(Ch)k,m,cyc.. The analogous graph with twisted
periodic longitudinal boundary conditions is a Möbius strip, denoted(Ch)k,m,cyc.,t . These
graphs haven = 2(k − 1)m vertices and can be regarded as cyclic and twisted cyclic strips of
mp-sided polygons, wherep = 2k, such that eachp-gon intersects the previous one on one of
its edges, and intersects the next one on its opposite edge. For a givenm, the(Ch)k,m,cyc. and
(Ch)k,m,cyc.,t form separate homeomorphic families†. The girth (length of minimum closed
path) isg = p = 2k for both.

Define

Dk =
k−2∑
s=0

(−1)s
(
k − 1

s

)
qk−2−s . (2)

By iterated use of the deletion–contraction theorem [5], we obtain the chromatic polynomials

P((Ch)k,m,cyc., q) = c0 + (a1)
m + (q − 1)[(a2)

m + (a3)
m] (3)

P((Ch)k,m,cyc.,t , q) = c(t)0 + (a1)
m + (−1)k(q − 1)[(a2)

m − (a3)
m] (4)

with c0 = q2 − 3q + 1, c(t)0 = −1,

a1 = D2k (5)

a2 = (−1)k+1Dk+1 +Dk (6)

a3 = (−1)k+1Dk+1−Dk. (7)

In the lowest case,k = 2 (cyclic and twisted cyclic ladder graphs), equations (3), (4) reduce
to known results [8, 12]. In [17] we have calculatedB andW for these cases, as part of the
general studies in [14–22].P always has a factorq(q−1); in addition,P((Ch)k,m,cyc., q) has a
(q−2) factor for(k,m) = (e, o) andP((Ch)k,m,cyc.,t , q) has a factorD2

k for oddk, (q−2)D2
k

for (k,m) = (e, e) andD2
k for (e, o), wheree = even ando = odd. (For oddk, Dk has a

factor (q − 2).) These are in accord with the values of the chromatic numberχ (minimum
q to colour the graph with the above constraint): for(k,m) = (e, e), (o, e), and (o, o),
χ((Ch)k,m,cyc.) = 2 andχ((Ch)k,m,cyc.,t ) = 3 while for (k,m) = (e, o), χ((Ch)k,m,cyc.) = 3
andχ((Ch)k,m,cyc.,t ) = 2.

Takingm and hencen to infinity, we determineW . For special pointsqs (e.g.,qs = 0, 1)
where the limitsn → ∞ and q → qs do not commute, we use the order of limits in
equation (1.5) of [17], i.e.n → ∞, thenq → qs . For a givenq ∈ C, W(q) is determined
by the termaj which is ‘leading’, i.e., has maximal|aj | > 1 over thej , and if |aj | < 1,

† Two graphsG andH are homeomorphic to each other if one of them, sayH , can be obtained from the other,G,
by successive insertions of degree-two vertices on bonds ofG (e.g., [13–15]).
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Figure 1. B for limm→∞(Ch)k,m,cyc.(t) with k = (a) 3, (b) 4. Chromatic zeros are shown for the
cyclic case withm = 10, i.e.,n = (a) 40, (b) 60.

thenW is determined byc0, and|W | = 1. The locusB is determined by the degeneracy of
leadingaj . From equations (3), (4), it follows thatW andB are the same for(Ch)k,m=∞,cyc.
and(Ch)k,m=∞,cyc.,t (indicated in the figure captions by(t)).

This locus is shown in figures 1 and 2 for 36 k 6 6 together with chromatic zeros for
long finite strips for comparison. We note the following theorems:B (i) separates theq plane
into various regions; (ii) is compact in this plane; and (iii) fork > 3, contains support for
Re(q) < 0. Theorem (i) is proved by explicit solution of the equations for the boundaryB.
Theorem (ii) is proved by recasting the degeneracy equations in the variablez = 1/q and
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Figure 2. B for limm→∞(Ch)k,m,cyc.(t) with k = (a) 5, (b) 6. Chromatic zeros are shown for the
cyclic case with (a) m = 8 (n = 64), (b) m = 5 (n = 50).

showing that they have no solution forz = 0. Theorem (iii) is proved below.
We find the following regions and forms forW : first,R1, which includes the real intervals

q > 2 andq < 0 and surrounds all ofB. Here

W = (D2k)
1

2(k−1) for q ∈ R1. (8)

For realq > 2 and a givenk,W increases monotonically from 1 atq = 2, approachingq from
below asq →∞: W(q →∞) = q[1− (2k − 1)(2k − 2)−1q−1 + O(q−2)]. For a fixedq in
this interval,W is a monotonically increasing function ofk. This can be understood physically
in the case of integralq > 2 since an increase ink increases the girth and thereby weakens



Letter to the Editor L199

the colouring constraint. Asq → 0− in R1,W → (2k − 1)
1

2(k−1) . For regionsRj 6= R1, only
the magnitude|W | can be determined [17]. The innermost region, denotedR2, includes the
interval 0< q < 2. Here, respectively,

|W | = |a2,3|
1

2(k−1) for q ∈ R2 and k even, odd. (9)

The condition of degeneracy of leading terms in the vicinity ofq = 0 is |a1| = |a2| for evenk
and|a1| = |a3| for oddk. Expanding these for fixedk andr → 0, whereq = reiθ , we get

cosθ = − (k
2 − 3k + 1)r

2(2k − 1)
+ O(r2). (10)

Hence, in the vicinity ofq = 0, the curveB is concave toward the right (bends to the upper and
lower right) fork = 2 but is concave to the left fork > 3. This proves theorem (iii), which, in
turn, implies that for a givenk > 3, and for sufficiently largen, these families have chromatic
zeros with Re(q) < 0 (as is evident from figures 1 and 2), which become dense, asn→∞,
to form the part of the respectiveB with Re(q) < 0. Fork = 3, 4 and 5, chromatic zeros of
(Ch)k,m,cyc. and(Ch)k,m,cyc.,t with Re(q) < 0 occur first for strip lengthsm = 6, 4, and 3,
respectively; whenk reaches the valuek = 6, they occur already for the minimum nontrivial
strip length,m = 2.

The fact that these families combine properties (ii) and (iii) is of particular interest since
we have previously found a number of families of graphs with Re(q) < 0 for some chromatic
zeros and part ofB, but in these cases,B was noncompact (unbounded in theq plane) [22].
The property (i) also contrasts with the situation for homogeneous open strips, where we
found [15,21] thatB does not enclose regions in theq plane.

We next comment on the other regions. At the pointq = 2 (≡ qc, whereqc is the maximal
value of realq ∈ B [16,17]) one branch ofB crosses the real axis vertically. To the upper and
lower right ofqc, there are two complex-conjugate (c.c.) regions, denotedRqc,r andR∗qc,r (r =
‘right’); here, |W | = |a3|1/[2(k−1)] for evenk and|W | = |a2|1/[2(k−1)] for oddk. In the latter
case of oddk, there are two additional c.c. regions adjacent toqc to the upper and lower left,
denotedRqc;`, R

∗
qc;` (` = ‘left’); in these regions,|W | = 1. Thus, for even and oddk, four

and six curves onB intersect atqc, respectively. As is evident from figures 1 and 2, fork > 4
there are further c.c. pairs of regions, each consisting of a pair on either side of the ‘main’ part
of B; here, in the outer parts,|W | = |a3|1/[2(k−1)] for evenk and|W | = |a2|1/[2(k−1)] for odd
k, while in the inner parts,|W | = 1 for both even and oddk. From our findings here we infer
that the total number of regions is 2k.

Define the outer envelopeE of B to be the set ofq ∈ B with maximal value of|q − 1|;
this is the inner boundary of regionR1. We observe that this envelopeE always lies outside of
the unit circle|q − 1| = 1. Ask increases,B lies closer to this circle.

Our present results strengthen the evidence for our conjectures [21, 22] that on a graph
with well-defined lattice directions, a necessary property for there to be chromatic zeros and,
in then→∞ limit, a locusB including support for Re(q) < 0, is that the graph has at least
one global circuit, defined as a route along a lattice which is topologically equivalent to the
circle, S1. (This is known not to be a sufficient property, as shown, e.g., by the circuit and
ladder graphs, which have such global circuits, but whose chromatic zeros and lociB have
support only for Re(q) > 0.) Note that in the second conjecture, the length of this global
circuit,Lg.c., must→∞ asn→∞ in order for some chromatic zeros and part of the locus
B to include support for Re(q) < 0. For the family(Ch)k,m,cyc. there are two such global
circuits, along the upper and lower sides of the strip†.

† We have also calculatedP ,W , andB for the cyclic strips of the square lattice with widthLy = 3 and the Kagoḿe
lattice withLy = 2, and again these yield chromatic zeros andB with support for Re(q) < 0 and haveB separating
theq plane into different regions.
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This letter, combined with our earlier calculations [17–22], suggests an answer to the
basic question of how large is the regionR1 to which one can analytically continueW from
the interval inq whereS0 > 0 for graphs with regular lattice directions: a sufficient condition
that in then → ∞ limit the locusB separates theq plane into two or more regions is that
the graph has a global circuit with limn→∞ `g.c. = ∞†. Thus, for graphs (with regular lattice
directions), a necessary condition thatR1 includes the fullq plane (except for the set of measure
zero occupied byB) is that the graphs do not contain any such global circuits.

This research was supported in part by the NSF grant PHY-97-22101.
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